Comparative developmental genetics and the evolution of arthropod body plans.
نویسندگان
چکیده
The arthropods display a wide range of morphological diversity, varying tagmosis, as well as other aspects of the body plan, such as appendage and cuticular morphology. Here we review the roles of developmental regulatory genes in the evolution of arthropod morphology, with an emphasis on what is known from morphologically diverse species. Examination of tagmatic evolution reveals that these changes have been accompanied by changes in the expression patterns of Hox genes. In contrast, review of the modifications to wing morphology seen in insects shows that these body plan changes have generally favored alterations in downstream target genes. These and other examples are used to discuss the evolutionary implications of comparative developmental genetic data.
منابع مشابه
Evolution of the entire arthropod Hox gene set predated the origin and radiation of the onychophoran/arthropod clade
BACKGROUND Dramatic changes in body size and pattern occurred during the radiation of many taxa in the Cambrian, and these changes are best documented for the arthropods. The sudden appearance of such diverse body plans raises the fundamental question of when the genes and the developmental control systems that regulate these designs evolved. As Hox genes regulate arthropod body patterns, the e...
متن کاملArthropod evolution: Same Hox genes, different body plans
Morphological evolution is conventionally studied by direct comparison of morphological characteristics in different organisms. Recently it has also become possible to study the evolution of developmental processes and gene functions, and to speculate about links between the evolution of genes and the evolution of morphology. One of the cases that has attracted particular interest is the relati...
متن کاملSegmentation in Tardigrada and diversification of segmental patterns in Panarthropoda.
The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals-Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthr...
متن کاملHomology versus convergence in resolving transphyletic correspondences of brain organization.
Due to the largely absent fossil record, phylogenetic comparisons of brain structures rely on the analysis of nervous systems in extant taxa, many of which appear to have distinctive and dissimilar neural arrangements. The use of a multitude of comparative criteria, including developmental genetics, phylogenomics and neural circuit architecture, has recently resolved a highly conserved structur...
متن کاملEvo-Devo: Variations on Ancestral Themes
Most animals evolved from a common ancestor, Urbilateria, which already had in place the developmental genetic networks for shaping body plans. Comparative genomics has revealed rather unexpectedly that many of the genes present in bilaterian animal ancestors were lost by individual phyla during evolution. Reconstruction of the archetypal developmental genomic tool-kit present in Urbilateria wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Annual review of genetics
دوره 39 شماره
صفحات -
تاریخ انتشار 2005